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Abstract
A real-valued symplectic group underlies the dynamics of quantum-mechanical
systems. Exploring the embedding of unitary groups clarifies the relation of
non-Hermitian PT - and CPT -symmetric quantum theories of recent interest.
Symmetries of the full dynamical framework are quite rich and reveal new
viewpoints on many topics in quantum theory. Transformations mixing ‘upper’
and ‘lower’ components of certain symplectic multiplets are indistinguishable
from coupling antimatter degrees of freedom. Quantities long identified with
physical observables are valid canonical coordinates of the theory, without
needing support from measurement doctrine. Dirac’s canonical quantization
is derived from consistency, and would be redundant as a new postulate. A
second-order dynamical framework exists in which observables are just the
same as the underlying degrees of freedom.

PACS number: 03.65.Ge

1. What is quantum dynamics?

The meaning of quantum theory is still evolving. A few years ago Bender et al [1] contradicted
the esteemed postulate that quantum Hamiltonian operators must be Hermitian. A broader
criterion of PT -symmetric theories was proposed. The work has had such impact that we can
safely call the field ‘PT theories’ or ‘PT (CPT ) quantum mechanics’ without confusion.

The work opened new opportunities to rethink what is meant by quantum mechanics.
History bypassed the most general coordinate transformations, and replaced them with a
misleading notion that ‘Hermiticity’ in ordinary form would be an invariant concept. Although
Hermiticity guarantees unitary time evolution and real eigenvalues, the invariant fact of unitary
evolution does not imply Hermiticity in the usual sense of transpose-conjugate operations on
matrix elements [1–3]. The more general concept of pseudo-Hermitian operators [3] as a
class with real eigenvalues is invariant under similarity transformations. Whether physical
Hamiltonians can then be characterized by PT or CPT symmetries is an interesting debate.
In some cases the PT –CPT extensions are found equivalent to ordinary quantum mechanics
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in transformed coordinates, but debate is not over. It is interesting to break the mold with
counterexamples of invariantly distinct type, as we shall do.

For physical meaning, rules of quantum theory must also be related to the meaning
obtained from measurements. Without engaging a philosophical morass of measurement
theory, there remain gaps in how quantum coordinates are set up and interpreted. This cannot
be separated from the symmetries of the dynamical framework. The purpose of this paper is
to extend quantum mechanics further. We may as well enlarge the symmetry group of the
dynamics to the largest possible, the symplectic (Sp) group. This is a genuine extension
that subsumes the usual rules, while allowing novel possibilities which are genuinely and
invariantly ‘new’. It is also a pleasure to see old results emerge in refreshing form and without
the need to make new postulates traditionally thought necessary for their justification.

1.1. Developing a different point of view

In the standard approach to quantum theory a finite number of classical degrees of freedom
qi(t) are ‘promoted’ by postulate to Hermitian operators Q̂i . The operators are said to play
the role of ‘observables’ although they cannot be directly measured. It can be non-trivial
simply to test whether or not an operator is ‘Hermitian’, because common definitions are tied
to interlocked conventions between the operator and the state space, and the conventions are
not themselves observable.

Let operators have a hat () and symbol 〈〉 denote the usual expectation. Consider what
information lies in the time evolution of 〈x̂i〉(t) and 〈p̂i〉(t) and all other possible expectations
〈Q̂i〉. There is a consensus that such expectation values can be measured. In full view of
statistical fluctuations, the numerical value of each 〈Q̂i〉 is a perfectly definite thing. We ask
if it is manifestly impossible for a group of determined engineers to develop a theory of the
observables based on the observables. Symbolically there should exist an invertible map of a
suitable set of operators into generalized coordinates Qi ,

〈Q̂i〉 →← Qi. (1)

Existence of such an ‘engineering theory’ is tantamount to existence of sets of coupled
differential equations DtQi = f (Qi) that determine the coordinate time evolution, where Dt

would be appropriate time-derivative operators.
While appealing for its deterministic flavor, it is by no means obvious that any such

relations could possibly be consistent with quantum theory. The usual Ehrenfest relations
show that time evolution of 〈Q̂i〉 is definitely not those of the classical theory from which
canonical quantization starts. Quantum dynamics also uses unobservable variables that are
lost when projecting to observables. Despite these difficulties working with observable
coordinates Qi is a central point. It permits separation of those transformations which
are mere notation compared to those with physical consequences. The power comes from
compensating coordinate changes of operators and states that cancel in forming observables.
It is then surprising that when the map is constructed, there exist generalized coordinates Qi(t)

for which the time evolution is Hamiltonian (section 4.1.1).
Here symplectic transformations and symmetries enter in the most fundamental way.

Hamiltonian structure implies a conjugacy of coordinate (q) and momentum (p) variables
arranged in pairs. We must discover from the map itself whether the Hamiltonian generalized
coordinate Qi is momentum-like or coordinate-like. Then each observable Qi(t) turns out
to be paired with a particular conjugate-phase variable long identified as ‘unobservable’.
This structure is developed independently from measurement theory, and does not need it for
justification, yet dovetails remarkably with it. Exactly half the variables used in a first-order
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description cannot be observed. However autonomous second-order differential equations
exist relating Q’s in terms of Q’s, completing the task of relating observables to dynamics.
This task is close to the program expressed by ’t Hooft [4] although in unexpected form.

While these ‘good coordinates’ are a focus, there always remain the usual linear coordinate
transformations among degrees of freedom carried out by representation theory

|ψ〉 → |ψ〉′ = V |ψ〉;
〈ψ |Qi |ψ〉 → 〈ψ |V †QiV |ψ〉 = �ij 〈ψ |Qj |ψ〉;
Qi → Q′

i = �ijQj ;
Such transformations are agreements to rename invariant observables in terms of one other,
a freedom necessary to retain. Intricate canonical transformations that mix q’s and p’s on a
hidden phase space are dual to the complex unitary transformations of conventional quantum
theory. There is great variation on how dynamical degrees of freedom are defined and counted.
It would be absurd to mistake the position operator x̂ with a single expectation 〈x̂〉. Under
canonical quantization a single classical degree of freedom is replaced by an infinite number of
complex dynamical components, whether represented by a wave, a ket vector or a Hilbert space
operator. Because much of our approach is new, the paper develops everything independently,
and in the most elementary manner possible.

In section 2, there is a review and a brief summary of complex similarity transformations
developed in PT theories. The complex components are then broken down to more general
real-valued canonical coordinates in the following section. Definitions and counting of degrees
of freedom are given here. Unitary versus non-unitary transformations are classified in
section 2.2.4. Special topics of time reversal, hidden gauge symmetries and ‘faster than
Hermitian’ quantum mechanics are developed as other special symplectic transformations.
The symplectic group has two disconnected components which naturally map into classical
antimatter and CPT symmetry in section 3. The role of Poisson brackets is viewed afresh
in section 4. From the precedence of dynamical symmetries the bracket structure becomes
a derived notation, as in classical physics, without any need to be postulated separately.
Lie algebra relations are then developed, with a novel discussion of canonical quantization.
Generalized Ehrenfest relations are developed as exact dynamical equations in section 4.1.1.
A simple example of dynamics which is not unitarily equivalent to the usual quantum theory
is given in section 4.2. A brief summary is given in section 5.

2. Symplectic dynamical symmetry

For completeness we first review the elementary symmetries of the quantum dynamical
framework.

In Schroedinger picture the usual state vector |ψ〉 obeys the equation

i|ψ̇〉 = Ĥ |ψ〉 (2)

called ‘the equation of motion in Schroedinger coordinates’. Let U(t) be an arbitrary time-
dependent unitary operator acting on the space of |ψ〉

|ψ〉 → |ψ〉U = U(t)|ψ〉; U(t)U(t)† = U(t)†U(t) = 1.

Then the equation for the transformed state is

i ˙|ψ〉U = ĤU |ψ〉U ; ĤU = UĤUU † + iU̇U †. (3)

The statement that Ĥ = Ĥ † is transformed into the rule ĤU = Ĥ
†
U under which

Hermiticity is a unitary invariant. Conversely, all the solutions of equation (2) are given by
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|ψ(t)〉 = V (t)|ψ(0)〉, where V (t) is directly related to H. The generator of the transformation
comes by differentiation

Ĥ = iV̇ V †(t) (4)

with Ĥ Hermitian. It follows that a feature of unitary evolution and invariance of the equation
of motion under unitary transformations are one and the same. It is a very basic result that has
traditionally led to restricting transformations to the unitary group by reasoning that has come
to be challenged. Measurement theory also plays a role in highlighting unitary evolution, but
it is a role we consistently separate from dynamics.

2.1. Complex similarity transformations

Extension of ordinary quantum mechanics to a complex PT -related framework comes by
introducing a complex similarity transformation S. The view of Mostafazadeh [3] is reviewed
here with certain additions for later use.

Let

|ψ〉 → |ψ〉S = S|ψ〉,
Ĥ → Ĥ (S) = SĤS−1,

i ˙|ψ〉S = Ĥ (S)|ψ〉S,
(5)

where in the last line we restricted Ṡ = 0.
Simultaneously we revise the rules for inner products to include a metric. The invariant

inner product is the sandwich

〈ψ |g|ψ〉, (6)

retaining the usual meaning for brackets. Invariance requires

〈ψ |g|ψ〉 → 〈ψ ′|g′|ψ ′〉 = 〈ψ |g|ψ〉, (7)

requiring the transformation rule

g′ = S†−1gS−1. (8)

That is, each index of g transforms covariantly. If norms are positive and real, then g is a
positive matrix and can be transformed to ‘1’. Alternatively g′ = (SS†)−1 is the transformation
from g = 1 to g′.

It is convenient to define

ψµ = 〈µ|ψ〉;
ψ∗µ = 〈ψ |g|µ〉;
〈ψ |g|ψ〉 = ψ∗µψµ.

(9)

In the same notation the equation of motion is

iψ̇µ = Hν
µ(S)ψν,

where Hν
µ(S) is a matrix of no particular symmetry. This equation can also be written with a

covariant derivative

iψ̇µ = ∂H
∂ψµ∗ ;

H = ψµ∗Hν
µ(S)ψν

= ψ∗
µHµν(S)ψν.

(10)
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The last expression shows Hµν(S) is necessarily Hermitian if H is real for all ψ . In matrix
language

(gH(S))† = H †(S)g† = gH(S), H †(S) = gH(S)g−1, (11)

with g = g†. This is the transformation of Hermiticity ‘in the Dirac sense’ into new
coordinates [3].

The unitary group itself is transformed: each element U → US = SUS−1. The unitary
operators no longer obey the matrix-element conditions of unitary, but obey a new relation

U
†
SgSUS = gS. (12)

That is, the unitary transformations become the isometry group.
The invariant features define what is important. The spectrum of eigenvalues of Hermitian

operators is real and invariant under similarity. Unfortunately this requires finding the
eigenvalues as a test. Alternately, given gS one can test and identify all US . After this
classification one can reverse all the arguments: given a theory with metric gS for inner
products, nobody can stop us from diagonalizing gS , constructing S−1 and going to coordinates
where gS = 1. If theory had not started with unit metric and Hermiticity, we would obtain
the unit metric by a sequence of coordinate transformations. With deference to measurement,
‘there is no observable distinction’ in complicating the theory with a non-trivial metric destined
to cancel out. It is absolutely a matter of convenience which set of coordinates might be
preferred.

Conventional motivation for Hermitian Hamiltonians and ordinary unitary transformations
is obvious. Yet it is not realistic to dismiss debate overPT –CPT -symmetric theories by formal
statements of their spectrum. We maintain that increasing the coordinate freedom should be
viewed as a positive development. As a matter of fact, practical physics as a whole is exactly
the art of manipulating coordinate systems. Bender et al [5] show a case where perturbation
theory is much more stable for a system in a non-Hermitian form. For this reason use of new
coordinates is hardly an insignificant affair.

There is plenty of motivation for exploring even more general forms.

2.2. Real extension

Here we discuss a real-valued extension which yields some remarkable results. First note
that a real-valued extension of quantum theory stands to be more general than complex
ones. Counting the components ψi = 〈i|ψ〉 as if on a finite-dimensional space, there are
2N real degrees of freedom on N complex dimensions. The most general complex unitary
transformation preserving 〈ψ |ψ〉 is called U(N) with N2 freedoms. The most general real
transformation preserving 〈ψ |ψ〉 is called O(2N) with N(2N − 1) freedoms. Complex
transformations are restricted by operating exclusively on matched pairs of real numbers.

Nothing can stop us from mixing real and imaginary parts more imaginatively. Rather
than considering linear combinations of |ψ〉, we may consider combinations of |ψ〉 and 〈ψ |.

We separate real and imaginary parts

ηi = Re ψi, ζi = Im ψi.

(Writing ‘kets’ and ‘bras’ adds little and is suppressed.) To generalize the dynamics we
postulate a real-valued functional H(ηi, ζi) with few a prior restrictions. Start by re-writing
equation (10) in the new variables,

i(η̇i + iζ̇i ) = ∂H(ηi, ζi)

∂(ηi − iζi)
;

H(ηi, ζi) → 〈ψ |Ĥ |ψ〉 (linear theory).

(13)
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Take the real and imaginary parts to find

η̇i = 1

2

∂H(ηi, ζi)

∂ζi

; ζ̇i = −1

2

∂H(ηi, ζi)

∂ηi

. (14)

We recognize this as Hamilton’s equations, up to factors

q̇i = ∂H
∂pi

; ṗi = −∂H
∂qi

;

qi = ηi/
√

2; pi = ζi/
√

2.

Then

ψi = qi + ipi√
2

. (15)

In the last lines we made the projections onto an orthogonal basis explicit with index i.
Othogonality will not be an invariant concept, and more general meaning will soon be explored.
Symbols q and p are not to be confused with operators, which have ‘hats’1.

The symmetry group of Hamilton’s equations is well known [6]. It is developed by
combining (ηi, ζi) or (qi, pi) into a long multiplet � = (q1 · · · qN, p1 · · ·pN) in which form
the equation appears as

�̇ = J
∂H
∂�

. (16)

Here J is a matrix with block representation

J =
(

0 1N×N

−1N×N 0

)
. (17)

Under a real-valued 2N × 2N transformation S, the equation transforms

� → �S = S�; �̇S = SJST ∂H
∂�

. (18)

Superscript T denotes the transpose. The symplectic group of 2N dimensions is the set of
matrices such that

SJST = J. (19)

The transformations preserve the symplectic metric J . Arvind et al [7] give a useful review of
the Sp group.

Objectivity of the real-valued phase space. We have shown that extending ordinary
complex quantum dynamics to more general real coordinates yields a classical underlying
dynamical system. The Hamiltonian structure of q’s and p’s will be maintained under all Sp

transformations, and it cannot be wiped out except by non-Sp transformations. For dynamical
purposes one may objectively view the phase space of q’s and p’s as being as ‘real as any
other’.

Yet by developing a constructive procedure, the particular q and p coordinates are tied to the
conventions from which they have been constructed. For one thing, the quadratic appearance
of a Hamiltonian in particular coordinates (fiducial form H(ηi, ζi) = 〈ψ |Ĥ |ψ〉) is not a
symplectic invariant. Myriad seemingly nonlinear classical systems may actually represent
quantum systems in new coordinates, and vice versa. Indeed the ‘canonical quantization’ by
which the usual Schroedinger operators can be motivated is not Sp invariant. We will revisit

1 Joining q’s and p’s into one object in equation (15), when they generally have different dimensions, requires
introduction of a scale with the dimensions of action set to unity. The same action scale will relate units of energy to
those of time: without an external definition of either it is meaningless to quibble.
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it in section 4.2. In section 4.1.1, we will explore more general coordinate transformations,
including the general relation of the canonical coordinates to observables.

Upper and lower components. We may also complexify the multiplet � with the map

� =




q1

q2

· · ·
p1

p2

· · ·




→ � =




ψ1

ψ2

· · ·
ψ∗

1

ψ∗
2

· · ·




. (20)

The map is a unitary transformation

� = 	�; 	 = 1√
2

(
1N×N i1N×N

1N×N −i1N×N

)
,

with

		† = 12N×2N . (21)

The invariant meaning of the transformation 	 is found in its diagonalization of the Sp

metric J ,

	J	† = −
(

i1N×N 0
0 −i1N×N

)
. (22)

On the basis � Sp transformations become S → S� = 	S	†. For some purposes the
complex symplectic form is very convenient. We will shortly discuss the interpretation of the
‘upper’ and ‘lower’ components of �.

Finite versus continuous freedoms. We used finite-dimensional notation for illustration and
simplicity. One may describe a state vector |ψ〉 on a space with a continuous basis label |x〉
via its matrix elements 〈x|ψ〉. As in quantum field theory, the continuous label can be treated
as an index, ψx = 〈x|ψ〉. Restricting x to discrete values labeled by integer-valued index i
recovers the finite-dimensional notation. There are then three types of underlying canonical
systems under the map ψx → (qx +ipx)/

√
2. There are finite-dimensional systems, as typified

by spin models, countably infinite-dimensional systems, as for mass points on an infinite line,
and continuously infinite systems, assumed with Schroedinger differential operators.

The basic dynamical equation of motion for continuously infinite systems becomes

iψ̇(x) = δ

δψ∗(x)
H(ψ(x), ψ(x)∗),

where δ/δψ(x) is the functional derivative. In conventional coordinates H is a functional of
the type

H(ψ(x), ψ(x)∗) =
∫

d3x ψ(x)∗Ĥψ(x)∗,

where in Schroedinger’s theory Ĥ → −NN2/2m + V (x) uses differential operators. We are
not concerned with motivating the Schroedinger operator via semi-classical correspondence.
We treat Hamiltonians as ‘given’ by outside information.

Subtleties of the continuum limit are important, and it is impossible to list all possible
variations of physical consequence. Truncating to particular finite or infinite subsets of the
Hilbert space is very common and perfectly compatible with finite-dimensional notation. A
workman-like attitude towards the continuum limit is developed in lattice methods of quantum



9890 J P Ralston

mechanics and quantum field theory. In these areas it is recognized that problematic features of
straightforward truncation are usually either trivial or irrelevant. If the physical limit becomes
a research problem there is usually a good reason.

Returning to our discussion of PT -symmetric systems: the construction generalizes
quantum dynamics to an entirely classical form regardless of the Hamiltonian or its
dimensionality. Symplectic transformations permit ‘the largest possible’ symmetry group of
the equation of motion, and are not all equivalent to unitary transformations in new coordinates.

2.2.1. The largest coordinate transformation group. Nothing in our procedure depends on
orthonormal labeling, and we may use ‘generalized coordinates’ freely.

The largest group on the coordinates qi is GL(N), the general linear group of N
dimensions. Non-linear transformations2 are treated as linear in differentials, dq ′ = G dq,
where G ∈ GL(N).

The fact that GL(N) is a subgroup of Sp(2N) is clear from the generator relations
developed below, (equation (34)). We can short circuit the argument with an elementary
physical one. In Lagrangian mechanics, any GL(N) transformation on generalized
coordinates q → q ′ is allowed. Since our q’s and p’s are c-numbers (not operators), the
Lagrangian L exists with the formula

L(q, q̇) = pq̇ − H(q, p). (23)

(Indices and sums implied.) The point transformation L(q, q̇) → L(q ′, q̇ ′) develops the
conjugate p′ = ∂L/∂q̇ ′, completing the Sp(2N) transformation.

In this physical fashion, we expand the transformation group on the coordinates to be the
largest one possible covariant on equations of motion. GL(N) is also the largest group on the
momenta if this is desired. Finally, the full group of canonical transformations mixing p’s and
q’s contains many more generators. There is a certain logic that either a set of coordinates or
a set of momenta can be observed, but not necessarily both. This is very clear with gauge-
coupled theories we discuss. ‘Autonomous formulations’ come from eliminating q’s or p’s,
as developed shortly in section 2.2.3.

2.2.2. Time reversal. Under time reversal we have

qi(t) → qi(−t), pi(t) → −pi(−t),

so that naturally

ψ(t) → ψ∗(−t). (24)

Linear theories, with Hamiltonians as quadratic forms, have

H(q, p) = �T Ĥ��; Ĥ� =
(

hqq hqp

hpq hpp

)
. (25)

The terms hqq and Hpp are even, and hqp = hT
pq are odd under time reversal. When

complexified by our rule of equation (15), ‘mixed forms’ containing hqp and hqp will become
proportional to i. From the canonical transformation theory we reproduce the operator
replacement rule i → −i for time reversal developed earlier [1, 8].

2 Throughout the paper the methods using linear transformations are readily extended to nonlinear transformations
which are locally linear in the differentials.
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2.2.3. Autonomous gauge-coupled theories. It is interesting that the mixed-form
Hamiltonians are gauge-coupled theories of unlimited dimension. The demonstration is
quite entertaining. Replace symbols in equation (25) using

hqq = K; hpp = M−1; hqp = −�T M. (26)

Complete the square

H(q, p) = 1
2pM−1p + 1

2qKq + qM�p + p�T Mq,

= 1
2 (p − A(q))M−1(p − A(q)) + V; (27)

A(q) = �q; V = 1
2q(K − �T M−1�)q. (28)

Observe that A(q) serves as vector potential with associated curvature

Fij = ∂Ai

∂qj

− ∂Aj

∂qi

= �ij − �ji.

Gauge transformations leave Fij unchanged while changing A(q). A gauge transformation
respecting quadratic H is the rule A(q) → A(q) + �q, where � = �T . These canonical p’s
are not gauge invariant.

Eliminating p’s produces an autonomous equation for q which is gauge invariant, involving
only an invariant curvature. From Hamilton’s equations

q̇i = ∂H
∂pi

= (M−1(p − A))i; q̇i = −∂H
∂pi

= −q̇j

∂A
∂qi

.

After substitution find the generalized Lorentz force

Mq̈i = q̇iFij + Ei . (29)

The quantity Ei = −∂V/∂qi − ∂Ai (q)/∂t is invariant under time-dependent gauge
transformations.

The coordinate p was eliminated above, revealing the gauge invariant coupling of q’s.
Curiously we can also eliminate q’s and discover a gauge invariant coupling of p’s. The
algebra is given in an appendix. The Lorentz p-force equation is

K−1p̈i = ṗj

(
∂Ai (p)

∂pj

− ∂Aj (p)

∂pi

)
+

∂Aj (p)

∂t
− ∂U(p)

∂pi

. (30)

Here A(p) = �pp in the quadratic theory with �p = Khqp. A symmetric part of �p produces
no curvature and has no effect on the autonomous equations for p. In this case the coordinates
q are not gauge invariant (see the appendix, equation (A.2)).

There are several reasons for highlighting this peculiar duality. First, gauge
transformations enlarge the notion of ‘equivalent Hamiltonians’. Certain PT -symmetric
theories are complex, representing a generalized magnetic coupling in particular coordinates.
Classifying those which are equivalent depends on the decision, ‘what is the physical phase
space?’ Second, Hamiltonian dynamics is deeply configured with equal treatment of q’s and
p’s, while physics as a whole seems to treat them differently. The equation shows the duality
is restored at the bottom.

Finally, we will reopen the old and basic issue whether the 2N -dimensional phase space
and p’s might be mere mathematical constructs invented to manage equations. When p’s can
be eliminated then second-order time evolution for q’s and a phase space of half the usual
dimension is perfectly valid. There is clear motivation for preferring this when p’s are not
gauge invariant. When q’s are not gauge invariant there is motivation for reduction to half-
dimension using autonomous equations for p’s. Without dwelling too much on this obvious
fact, reduction to half the dimensions seems important and we return to it in section 4.1.1.
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ψ, ψ∗

Ω

Φ Φ

U

Sp

Ω−1

ψ, ψ∗

Figure 1. Transforming from Hermitian to non-Hermitian systems: the complex non-unitary
transformations are equivalent to going to real-valued phase-space coordinates, making Sp

transformations, and returning to complex coordinates.

2.2.4. Hermitian and non-Hermitian forms. Quadratic forms are coordinate dependent,
having inherited their matrix elements from the coordinates chosen in equation (25). A basic
question, then, is how PT theories transform one convention to another.

Under a linear transformation we have two expressions for the same concept,

� → �S = Sφ; � → �S = S��. (31)

Selecting the upper components of � we have

ψ ′
S = V (S)ψ + W(S)ψ∗. (32)

Let us explore the special transformations that do not mix upper and lower components of �,
namely ψ and ψ∗ (figure 1).

Proceed with an infinitesimal transformation, writing

S =
(

1 0
0 1

)
+

(
a b

c d

)
. (33)

The Sp condition of equation (19) yields

d = −aT ; b = bT ; c = cT . (34)

Thus matrix d is eliminated, while matrix a is unrestricted. It has N2 parameters, the GL(N)

generator. The two symmetric matrices b, c have N(N + 1) parameters, making a total of
N(2N + 1) parameters, the known dimension of the Sp group [7].

Compute the infinitesimal change

δq = aq + bp; δp = cq − aT p, (35)

and substitute q and p from equation (15). We obtain

V (S) = 1
2 (a − aT + i(b − c)); W(S) = 1

2 (a + aT + i(b + c)). (36)

The condition that W = 0 so that S not mix ψ and ψ∗ is

a = −aT ; c = −b = −bT . (37)

The transformation becomes

δ

(
q · · ·
p · · ·

)
=

(
a b

b −a

)(
q · · ·
p · · ·

)
; δψ = δq + iδp√

2
→ i(b − ia)ψ.

The result is expressed more simply as

δψ = iGψ; G = b − ia = G†.

The Sp transformations not mixing ψ with ψ∗ are precisely the unitary group acting on ψ .
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As consistent the matrices a, b make N(N + 1)/2 +N(N −1)/2 = N2 independent Hermitian
generators.

Conversely the remaining N2 + N transformations that do mix ψ with ψ∗ are not
unitary. Unless specially contrived to commute they will not preserve the Hermiticity of
an operator. Suppose we start with a Hermitian quantum system. Consulting figure 1: to
make a non-Hermitian system of general kind, transform from ψ → �, then transform �

under Sp elements which violate equation (37) and transform back to ψS . One may also
transform directly. The point is to identify the subgroup preserving 〈ψ |ψ〉 as the intersection
O(2N)

⋂
Sp(2N), which is simply U(N) expressed in real coordinates.

We have accomplished a primary goal of expressing the relation of PT theories to
ordinary ones in invariant terms. The transformations that revise Hermiticity are the coset
SP (2N)/U(N), and they do not form a group.

2.2.5. Diagonal re-scalings. The Sp group preserves areas on the phase space, and in
a definite sense consists of the maximal compact subgroup (unitary) transformations plus
diagonal re-scalings �. A unique representation3 is

S = U1�UT
2 ; U1U

T
1 = U2U

T
2 = 12N×2N, (38)

with

� =




λ1 0 0 0 0
0 λ2 0 0 0
0 0 · · · 0 0
0 0 0 λ−1

N−1 0
0 0 0 0 λ−1

N


 .

The proof is straightforward. First show that SST is in the group. By construction
SST = U1�

2UT
1 is symmetric, and by diagonalizing it we can construct orthogonal U1

and eigenvalues �. Choose the signs of U1 to make them positive. Similarly get U2 from ST S.
With U1 and U2 necessarily in the group we use 2N2 parameters, leaving N parameters for the
2N ×2N diagonal �. Each singular value must come with its inverse, due to area-preservation
pair by pair of the Sp transformations.

Thus all transformations that revise Hermiticity are classified as products of discrete
‘row-swappings’, ‘ordinary unitaries’ so familiar in quantum theory, and diagonal re-scalings.
Discrete row swaps with negative determinant define parity transformations. We will explore
other transformations in section 3.

2.2.6. Example: faster than Hermitian quantum mechanics. Let us now work an example
of an interesting Sp transformation.

Consider the following simple transformation mixing ψ and ψ∗:(
ψ ′

1

ψ∗′
2

)
= γ

(
1 −iβ
iβ 1

) (
ψ1

ψ∗
2

)
. (39)

This is written in 2 × 2 form, suppressing the other transformations obvious by complex
conjugation. What is needed for this transformation to be Sp? Expand it to 4 × 4 real form


q ′

1

q ′
2

p′
1

p′
2


 = γ




1 0 0 β

0 1 β 0
0 β 1 0
β 0 0 1







q1

q2

p1

p2


 .

3 The representation is unique up to discrete orderings of the diagonal elements.
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The transformation is Sp provided

1

γ 2

(
1 β

β 1

)(
0 1

−1 0

) (
1 β

β 1

)
=

(
0 1

−1 0

)
with each element a 2 × 2 block. Solving gives the parameter constraint

γ 2(1 − β2) = 1 (40)

or

β = sin α; γ = 1

cos α
. (41)

The transformation matrix becomes

γ

(
1 −iβ
iβ 1

)
→ 1

cos α

(
1 −i sin α

i sin α 1

)
= CP; (42)

C = 1

cos α

(
i sin α 0

0 −i sin α

)
; P =

(
0 1
1 0

)
. (43)

The identification of matrices C as representing charge conjugation and parity on a finite-
dimensional system has been discussed previously [8]. Equation (42) recovers the ‘faster than
Hermitian’ transformation of Bender, Brody, Jones and Meister [9].

The fact that the unitary distance between points is not invariant is a defining feature
of non-unitary transformations. This becomes particularly interesting when we extend the
geometry to the Sp transformations. The indefinite Sp metric does not allow a non-zero
invariant notion of ‘length’, as the basic invariant �T J� = 0. In effect, certain points
separated by zero distance are a natural Sp concept. The conceptually interesting problem
of the symplectic brachistochrone problem appears to be this: given two states |ψ1〉, |ψ2〉
equivalent to two points �1,�2 on a phase space, what can we say about Hamiltonians that
connect them? The bradystochrone problem is to find the slowest transformation. From
Hamilton–Jacobi theory, these are the coordinates in which the Hamiltonian developing states
is zero, namely the Heisenberg representation.

2.2.7. All Sp transformations are Hamiltonian. Hamiltonian time evolution of course
preserves Hamilton’s equations and is therefore Sp. Reversing the question, do all Sp

transformations correspond to evolution under some Hamiltonian?
From the generator relation, infinitesimal Sp transformations on the � coordinates take

the form

S =
(

1 0
0 1

)
+

(
a bs

cs −aT

)
,

where bs and cs are symmetric. To recover the physical interpretation of equation (26), replace
symbols

b → M−1; c → −K; a → −M−1�.

The infinitesimal changes are

dq = M�p dt + Mq dt; dp = Kq − �T MT p. (44)

Inserting the metric J this becomes(
dq

dp

)
= J

(
K = �T M−1

−M−1� M−1

) (
q

p

)
dt

= J
∂H
∂�

dt (45)
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where the local Hamiltonian is just equation (27). No matter what the Sp transformation it is
equivalent to a locally linearized Hamiltonian generator of quadratic type.

Then locally on the phase space all possibilities are exhausted by quadratic forms and
generators which are either compact or non-compact, either equivalent to the ordinary theory
or one generating rescalings. It is important that non-unitary Sp transformations mix ψ with
ψ∗ and must invariably include conjugation on the complex coordinates. There seems to be a
link missing in the literature, however, and that link involves antimatter.

3. Classical antimatter

Antimatter is invariably associated with special relativity and quantization. Yet any quantum
theory induces a classical structure. It follows that antimatter must be realized as a classical
dynamical system.

Return to Hamilton’s equations,

�̇ = J
∂H
∂�

. (46)

It is responsible for inducing a symplectic flow of time evolution. But there is an alternative
way to set up physics. Suppose we replace J → −J . The Sp group is not changed since
SJST → J is not changed. We have shown that Sp transformations are always Hamiltonian
theories. But no Sp transformation will change J → −J . It follows that the Hamiltonian
world comes in two distinct varieties, J form and anti-J form.

The anti-Hamilton equations using −J are

q̇− = −∂H−
∂p−

; (47)

ṗ− = ∂H−
∂q−

. (48)

Indices have been suppressed. Is this a distinctly different physics or a change of convention?
First, we may convert the new equations to the old ones by reversing the direction of

time, t → −t with H fixed. This is a feature of antimatter. Second, we may convert the new
equations to the old ones by reversing the sign of H− with t fixed. This is another feature of
antimatter. Third, the coupling to an electromagnetic field is reversed. It is reversed for the
formal coupling to A, equation (28) and it is reversed for the ‘macroscopic’ coupling done in
continuum theories with −i 	∇ − e 	A. Finally, the complex version of the basic transformation
C converts ψ to ψ∗ and (up to canonical transformations) is unique. The features listed define
antimatter.

Note that if a system consists entirely of matter or antimatter alone, it is mere convention
to choose either the usual form of Hamilton’s equations or the anti-form. Conversely: if a
system consists of a mixture of matter and antimatter, it is not a matter of convention and there
are definite physical consequences. The distinction can become observable depending on the
symmetries of Hamiltonian. When the upper and lower components are mixed, combinations
diagonalize C to make self-conjugate states with eigenvalues ±1, just as seen in explicit
calculations. We suggest a more general interpretation of the PT and CPT invariant theories
that have been so fascinating in the literature: they permit couplings to antimatter.

It is surprising that neither special relativity nor quantum field theory is needed to justify
the interpretation. The question of whether time evolution proceeds unitarily is related
but separate. In section 4.2, we return to the question of antimatter and positive definite
probabilities of relativistic quantum mechanics.



9896 J P Ralston

3.1. Continuum re-scalings and the ix̂ theory

As noted with equation (38), certain non-unitary Sp transformations are essentially diagonal
rescalings,

S = U1�U2; � =
(

λ 0
0 λ−1

)
. (49)

Here λ is an N × N diagonal matrix. We explore the complex representation of such
transformations in order to relate them to operator-based continuum PT theories seen in
the literature. The mixing of upper and lower components is very interesting.

When � → �� we have � → ���, with �� = 	�	†, so that

�� =
(

1/
√

2 i/
√

2

1/
√

2 −i/
√

2

) (
λ 0
0 λ−1

)(
1/

√
2 1/

√
2

−i/
√

2 i/
√

2

)
,

=
(

λ + λ−1 λ − λ−1

λ − λ−1 λ + λ−1

)
. (50)

In terms of mixing upper and lower components, the transformed matrix is the operation

ψ ′ = c+ψ + c−ψ∗; c± = 1
2 (λ ± λ−1).

Inverting gives

λ±1 = c+ ± c−; c2
+ − c2

− = 1. (51)

The constraint is solved by c+ = cosh(y), c− = sinh(y) and finally

�� =
(

cosh(y) sinh(y)

sinh(y) cosh(y)

)
.

Since λ was by definition diagonal, we have the Minkowski (‘Lorentz’) group ON(1, 1) with
N generators.

Continuum PT physics has generally focused on the bound states. Perhaps the simplest
case is the Hamiltonian [1]

H = 1
2 p̂2 + 1

2 x̂2 + ix̂.

Attention to boundary conditions and use of continuation in the complex plane has led to
explicit solution to large families of theories, as in the elegant work of Ahmed et al [10]. We
should also mention −x̂4 theory, recently solved by contour deformation and conversion to
a non-Hermitian theory by Jones et al [11]. The bound eigenstates ψbound are real-valued in
coordinates where Ĥ = Ĥ †. From reality we write ψbound = ψ+, where

ψ± = ψ ± ψ∗.

The complementary option for mapping ψbound is of course ψ−. The Lorentz transformation
of ψ± is

ψ∗′
± = e±yψ±. (52)

Such states can fairly be called Sp-light-cone coordinates.
Then from the O(1, 1)N subgroup in light-cone coordinate, diagonal re-scalings of Ĥ

have a representation

Ĥ → Ĥ y = eyĤ e−y. (53)

Let y → p be the real eigenvalues of the continuum momentum operator p̂. We have recovered
1
2 p̂2 + 1

2 x̂2 + ix̂ = ep̂
(

1
2 p̂2 + 1

2 x̂2
)

e−p̂.
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Similarly, it was shown [11] that a transformation with y = c1p + c2p
3 reverts the −x4 theory

to conventional form. These transformations have previously been obtained by operator
methods requiring human observation and cleverness. The group structure is quite simple
and systematic. Yet putting an arbitrary Sp into a canonical form such as equation (49) is
seldom easy. By starting off with the group properties an infinite number of interesting Sp

transformations can be produced: perhaps this might be productive in constructing new Sp

theories.

4. Brackets from dynamics

Given an induced classical dynamics there exist Poisson brackets. Certain known results
of quantum theory, also generalized to PT -symmetric theories [12], then fall into place
beautifully.

Let A,B be functions of qi, pi . We define the Poisson brackets (PB) as

{A,B}PB =
∑

i

∂A

∂qi

∂B

∂pi

− ∂A

∂pi

∂B

∂qi

. (54)

Let symbols Q,P represent new Sp-related canonical coordinates. The PB of an Sp

transformation qi, pi → Qi, Pi are manifestly invariant, with {Qi, Pj } = δij a test the
transformation is Sp.

Now consider projective functions that are special quadratic ‘sandwiches’

A(Q,P ) = PÂQ,

with a corresponding expression for B. Here Â is a matrix we call a ‘representation’ (rep.) of
the quantity A. Appropriateness of this word usage will become clear. For the moment any
particular Â simply produces a projective rule returning one piece of information per matrix.

The PB algebra of A and B develops an algebra for the matrices

{A,B}PB =
∑

i

∂P ÂQ

∂Qi

∂P B̂Q

∂Pi

− ∂P ÂQ

∂Pi

∂P B̂Q

∂Qi

,

= P ÂB̂Q − P B̂ÂQ.

Since the P · · ·Q symbols always remain outside of this sandwich, we can replace them by a
‘round projection’ symbol using

A → P ÂQ ≡ (Â).

The PB of (Â) and (B̂) map into the commutator of the reps

{(Â), (B̂)}PB = ([Â, B̂]).

In particular, if Ĥ is a Hamiltonian rep., then time dependence of any quantity obeys

d(Â)

dt
= ([Ĥ , Â]) +

∂(A)

∂t
.

The time dependence can then be transferred to the matrices, namely the Heisenberg
representation.

By construction the transformation from qi, pi → ψi, ψ
∗
i is canonical up to a factor.

Calculate the PB to verify

{ψa,ψ
∗
b }PB =

∑
i

∂ψa

∂qi

∂ψ∗
b

∂pi

− ∂ψa

∂pi

∂ψ∗
b

∂qi

,

= −iδab. (55)
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This conjugacy motivates quadratic sandwiches using the complex variables. Define the pointy
projection

(Â) → 〈Âψ 〉 = 〈ψ |Âψ |ψ〉,
where Âψ is the transformed rep of Â into complex coordinates. The subscript ψ can then be
dropped without confusion. The PB become

{〈Â〉, 〈B̂〉}PB = i
∑

k

∂〈Â〉
∂ψk

∂〈B̂〉
∂ψ∗

k

− ∂〈B̂〉
∂ψk

∂〈Â〉
∂ψ∗

k

. (56)

On continuous infinite dimensions replace
∑

k ∂/∂ψk → ∫
dx δ/δψx .

The projective maps are then assessed through their transformation properties. The
meaning of each 〈Âk〉 is entirely subsumed by its PB algebra. And by calculation the algebra
of the pointy projections is exactly the algebra of the matrix representations, up to i

{〈Â〉, 〈B̂〉}PB = i〈[Â, B̂]〉.
Since this fact is true for any |ψ〉, it is a general consistency relation that starts with the Lie
algebra of the projections, and predicts the Lie algebra of the commutators

given {A,B}PB = C

then → i[Â, B̂] = Ĉ.
(57)

The rule of equation (57) is sometimes called ‘canonical quantization’. We find it is a
derived fact, not a separate postulate.

Example. Let the q’s and p’s be components of irreducible representations of the rotation
group. For each irrep. s, let the transformation rule under rotations be

|ψs〉 → (1 + i	θ · 	J s)|ψs〉.
Here Ĵ s

i are the spin-s rotation generators. No quantum mechanics is involved in this entirely
geometrical classification. We form the pointy projections

〈
J s

i

〉
, and calculate the PB{〈

Ĵ s
i

〉
,
〈
Ĵ s

j

〉}
PB

= 〈[
Ĵ s

i , Ĵ
s
i

]〉 = iεijk〈Ĵ k〉.
Without any measurement doctrine the

〈
J s

i

〉
are already the classical spin of the dynamical

system4. Perhaps the most familiar case is spin 1. Then
〈
J s=1

i

〉 = εijkqjpk , the Newtonian
result. Similarly, a set of q’s and p’s transforming like spinor components predicts a literal
classical spin 	s = 〈	σ 〉/2 where 	σ are the Pauli matrices.

4.1. Consistency questions in the relativistic case

Since (q, p) → (ψ, iψ̄) is canonical up to i, we can express the Schroedinger action S in
complex coordinates as

SSchroed =
∫

dt pi q̇i − H =
∫

dt i〈ψ |ψ̇〉 − 〈ψ |Ĥ |ψ〉.

The bracket 〈ψ |ψ̇〉 implies an integration over the volume element d3x when dealing with
Schroedinger operators. Compare the Klein–Gordon (KG) action of relativistic quantum
mechanics

SKG =
∫

dt d3x
1

2
ϕ̇∗ϕ̇ − 1

2
	∇ϕ∗ 	∇ϕ − m2

2
ϕ∗ϕ.

4 It is generally necessary to verify the full PB algebra of all projections, as developed from transformation properties
of ψ .
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An ancient line of argument holds this is obtained by canonical quantization of p̂ →
−i 	∇, writing Ĥ 2 → p̂2 + m2, just as the Schroedinger operator was obtained from
Ĥ → p̂2/2m + V .

Yet relativistic quantum mechanics is known not to be a consistent quantum theory. An
inconsistency lies in misapplying the PB rules in the KG theory. From Lagrangian physics the
conjugate variables are

pφ = δL
δϕ̇

= 1

2
ϕ̇∗; p∗

φ = δL
δϕ̇∗ = 1

2
ϕ̇.

In KG theory the round projections are

(Â) =
∫

dx
1

2
ϕ̇∗Âφ +

1

2
ϕ̇Âφ∗. (58)

The PB algebra of round projections is again transferred to the commutator algebra of the
matrix representations. The kinematically consistent representations of total momentum and
position in the KG theory are then

(p̂) =
∫

d3x
1

2
ϕ̇∗(−i 	∇)φ +

1

2
ϕ̇(−i 	∇)φ∗;

(x̂) =
∫

d3x
1

2
ϕ̇∗	xφ +

1

2
ϕ̇	xφ∗.

It follows by algebra that

{(p̂)i, (x̂)j }PB = −iδij . (59)

This is just the same algebra that makes use of −i 	∇ a consistent momentum operator in the
Schroedinger theory, but in that case pψ = iψ̄ . It is kinematically inconsistent to use −iφ∗ 	∇φ

as the momentum density in the KG theory. Recognition of equation (59) is very old, with a
different development given e.g. in the textbook by Roman [13]. Many textbooks also derive
the momentum density from Noether’s Theorem [14].

Historically conservation laws were not obtained from Noether’s theorem, but by
manipulating equations of motion. That approach lacks the connection between conjugacy
of a particular collective momentum tied to a particular conjugate symmetry. The search
for a positive-definite conserved probability was particularly influential, and a good example.
Every Lie algebra represented by round projections has a ‘grand center’ that always commutes
with everything: it is the operator Â → 1. Using this in equation (58) the conserved current
density is

ρKG = 1
2 (φ̇∗φ − φ∗φ̇).

In the Schroedinger theory Â → 1 gives ψ̄ψ . Each form is conserved from symmetry
under the global U(1) ‘gauge transformation’ of multiplication of fields by exp(iδ), but only
the Schroedinger case is positive definite. The result clarifies the fact that building dynamics
under the presumption of operator replacement rules led to inconsistency ultimately reconciled
in quantum field theory.

We have come full circle exploring the role of Hermitian operators and their coordinate
dependence under traditional usage. The Dirac rule to ‘replace every classical quantity A

by a Hermitian operator Â to produce a quantum theory’ is kinematic in general. It may
be kinematically inconsistent if misapplied. Reiterating this, the importance of ‘Hermitian
operators’ comes from their helpful notation encoding symplectic structure that pre-exists in
the dynamical framework.
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4.1.1. Exact Eherenfest. An interesting consequence may be useful for solving or
approximating quantum theories. Our use closes our chain of logic relating observables
to coordinates.

The PB relations have no more and no less content than Hamilton’s equations. Therefore
if we find variables Qk = 〈Q̂k〉 and Pk = 〈P̂k〉 which are canonically conjugate, the equation
of motion is simply

d

dt
〈Q̂k〉 = ∂H(Qk, Pk)

∂〈P̂k〉
; d

dt
〈P̂k〉 = −∂H(Qk, Pk)

∂〈Q̂k〉
.

Conversely, a complete solution to these equations for a complete set of variables predicts
ψk,ψ

∗
k . Then every exact Ehrenfest relation is a canonical equation of motion linked to the

underlying degrees of freedom. These relations are useful, and a different set of equations
traditionally developed for purposes of semi-classical approximations should not be confused.

Expressing H in terms of expectations is unconventional, and it is admittedly difficult
to construct a large number of conjugate operators. Progress is made with symmetries. The
usual N × N complex Hamiltonian commutes with N − 1-independent mutually commuting
operators Q̂J , J = 1, . . . , N . Make a basis for these operators in their diagonal frame with
Q1 = diag(1, 0, 0 . . .),Q2 = diag(0, 1, 0, 0 . . .), etc. Since Q̂J commute with Ĥ from the
bracket algebra, they generate symmetries of the Hamiltonian with parameters �J

|ψ〉 → exp(i�JQJ )|ψ〉;
H → H;
d

dt
〈QJ 〉 = − ∂H

∂�J

= 0.

The last line uses �j as coordinates of ψ , and canonical degrees of freedom conjugate to
〈QJ 〉.

By this strategy we can express H using QJ as pointy projections. In the mutually
commuting frame,

H =
∑

J

〈QJ 〉ωJ .

The �J equations are

d�J

dt
= ∂H

∂〈QJ 〉 = ωJ ; �J (t) = �J (0) + ωJ t.

Half of the canonical coordinates then reduce to cyclic variables: angles �J that are classically
unobservable. The term ‘classically unobservable’ is accurate: an ideal cyclic variable cannot
be observed while maintaining the symmetry that makes it cyclic.

Symmetry then leaves 〈QJ 〉 as candidates for ‘observables’ in the Sp sense. It is
remarkable that exactly the same projections have long been known as observables on
experimental grounds. The related questions of how averages are used in PT theories
have been elucidated in the work of Japaridze [15] also re-examining the Ehrenfest
relations. Traditionally a strictly literal interpretation of unobservables has been imposed for
quantum systems, while measurements of classical systems were long considered ignorable
perturbations. The two are not so different, but pursuing the interesting differences would lead
to foundations of measurement theory beyond the scope of discussion.

Returning to the goal stated in the introductory passages, we have now built the map of
〈QJ 〉 → Qi , while finding half the Hamiltonian coordinates are absent from observables.
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θ

q

Figure 2. Compactification. Coordinate q → cos(θ/2) makes a periodic invertible map.

A first-order formalism cannot proceed from knowing half the canonical variables. However
we only need half the Hamiltonian coordinates when we go to the second-order gauge-invariant
formalism via equations (29) or (30). It follows that autonomous and complete second-order
time evolution relating observables to observables can always be constructed. This is an
interesting conceptual development reducing the quantum system to an experimentally direct
formulation. At the same time, any gains in practical efficiency would have to come from
specific examples and prove themselves against the awesomely effective calculation tools
developed within the conventional approach.

4.2. A quantum model with imaginary frequencies

Previous literature on CP-symmetric theories have respected this ordinary meaning of unitarity
with time evolution on torii. Yet physical quantum systems are also observed to evolve
with imaginary frequencies, for example when particles decay. Such systems are invariably
embedded in larger systems with toroidal evolution. Because of its intrinsic interest we explore
an alternative system evolving with imaginary frequencies.

Hyperbolic evolution is made by Hamiltonians with ‘wrong-sign’ oscillators

H(qi, pi) =
∑

i

ωi

2

(
p2

i − q2
i

)
, (60)

where ω is real. This sort of system can be transcribed into bilinears in ψ2, ψ∗2, and
transformed further by unlimited Sp transformations. Whatever the coordinates, it appears
that little of quantum theory can be salvaged if the coordinates evolve with unlimited range.

To continue let us compactify coordinate q’s to run on a finite range (figure 2). The
case of one canonical pair suffices for illustration. Let θ be the angle parameter on a closed
space, 0 < θ < 2π . A naive compactication might assign q → θ , identifying q ≡ q + 2π .
Unfortunately that map is inconsistent with the Hamiltonian equation (60), which is not
periodic in q.

An invertible periodic transformation (figure 2) is given by

q = cos(θ/2). (61)

Under θ → θ + 2π the variable transforms with a sign change q → −q: we have
compactifation with a twist. Besides invertibility, the reason for the half-angle map will
become clear shortly.
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Using the full freedom of Sp symmetries, we transform variables using the Lagrangian

L(q, q̇) = 1

2ω
q̇2 +

ω

2
q2;

→ L(θ, θ̇) = 1

8ω
θ̇2 sin2(θ/2) +

ω

4
cos(θ). (62)

In its nonlinear form we recognize the physical interpretation. It is the Lagrangian of a
Newtonian mass point glued to a rolling wheel and subject to gravity. The solution to time
evolution takes the form

θ(t) = 2 cos−1(a e−ωt + (1 − a) eωt ),

where a is a constant of initial conditions. Note that e±ωt appear in the time evolution without
any catastrophic consequences.

The example shows how an autonomous system with exponential time dependence can
sometimes be interpreted. Points θ̇ → ±∞ may occur. However they are coordinate
singularities with no physical meaning. If a rolling wheel can cycle between positive and
negative exponential growth while being perfectly physical, we may question proscriptions
forbidding such behavior, which cannot be so general.

A radical feature of the model system equation (60) is conservation of a ‘wrong-sign’
quadratic form. If notions of probability itself can sensibly be extended to negative real
numbers—and there is a literature5 on this point [16]—a wrong-sign quadratic form might be
converted to a compatible probability theory. Further exploration would take us into unknown
territory.

5. Summary

The whole of quantum dynamics has a real Sp representation which allows far richer
transformations than the usual unitary set. The transformations from Hermitian Hamiltonians
to non-Hermitian ones use just those Sp transformations which are non-compact. They
mix ψ and ψ∗ in the conventional, coordinate-dependent view using CPT transformations.
The Dirac ‘quantization postulate’ is seen to be a derived consequence of consistency.
The Ehrenfest relations are exact equations of motions for certain canonically transformed
variables. Quantities recognized as experimental observables are precise canonical coordinates
of the theory via a series of coordinate transformations.

These results have been found in an approach leaving open for exploration the most basic
decision on the group of time evolution. If the Hamiltonian uses those generators of the Sp

group which produce a compact subgroup, it is invariantly the same system as an ordinary
one, perhaps including antimatter, and then cast into more general coordinates. Other cases
would constitute new physics. It might be dynamically consistent to make H a function
implementing nonlinear time evolution. The simplest possibility to extend the dynamics
further would involve Hamiltonians with non-compact generators. Although this is interesting
for itself, we caution that quantum rules of measurement and statistical interpretation are
deeply contrived to mesh with unitary transformations. Further extension of dynamics and
statistical interpretation would seem to need simultaneous development.

5 ‘Negative probability’ is invariably associated with the school of this reference. Feynman’s contribution is also
interesting. See [17].
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Appendix

Let the Hamiltonian be a quadratic form

H(q, p) = 1
2�T Ĥ��; Ĥ� = 1

2

(
hqq hqp

hT
qp hpp

)
. (A.1)

Towards developing an autonomous equation for p write

hqq = K; hpp = M−1;
hqp = K�p; A(p) = �pp.

The Hamiltonian is

H = 1
2 (q − A(p))K(q − A(p)) + U(p); U(p) = 1

2p
(
M−1 − �T

p K�p

)
.

From Hamilton’s equations,

ṗi = −∂H
∂qi

= −K(qi − Ai (p)); qi = −K−1ṗi + Ai (p). (A.2)

This eliminates q, which in this approach is gauge dependent. Taking the time derivative of
the last equation gives

−K−1p̈i = q̇i − ∂Ai (p)

∂pj

ṗj − ∂Ai (p)

∂t
.

From the other Hamilton equation

q̇i = ∂H
∂pi

= −K(qj − Aj (p))
∂Aj (p)

∂pi

+
∂U(p)

∂pi

,

= ṗj

∂Aj (p)

∂pi

+
∂U(p)

∂pi

.

Combining terms gives the Lorentz p-force equation

K−1p̈i = ṗj

(
∂Ai (p)

∂pj

− ∂Aj (p)

∂pi

)
+

∂Aj (p)

∂t
− ∂U(p)

∂pi

. (A.3)

The multiplet Aµ(p) = (U,Aj (p)) can be transformed by Aµ(p) → Aµ(p) + (−∂θ/∂t,

∂θ/∂pi) without changing the equation of motion.
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